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Abstract
The Wightman function, the vacuum expectation values of the field square and
the energy–momentum tensor are investigated for a massive scalar field with
a general curvature coupling parameter in the region between two coaxial
cylindrical boundaries. It is assumed that the field obeys general Robin
boundary conditions on bounding surfaces. The application of a variant of
the generalized Abel–Plana formula allows us to extract from the expectation
values the contribution from single shells and to present the interference part
in terms of exponentially convergent integrals. The vacuum forces acting
on the boundaries are presented as the sum of self-action and interaction
terms. The first one contains well-known surface divergences. The interaction
forces between the cylindrical boundaries are finite and are attractive for
special cases of Dirichlet and Neumann scalars. For the general Robin
case, the interaction forces can be both attractive or repulsive depending
on the coefficients in the boundary conditions. The total Casimir energy is
evaluated by using the zeta function regularization technique. It is shown that
it contains a part which is located on bounding surfaces. The formula for the
interference part of the surface energy is derived and the energy balance is
discussed.

PACS numbers: 11.10.Kk, 03.70.+k

1. Introduction

The Casimir effect is one of the most interesting macroscopic manifestations of the non-
trivial structure of the vacuum state in quantum field theory. The effect is a phenomenon
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common to all systems characterized by fluctuating quantities and results from changes in
the vacuum fluctuations of a quantum field that occur because of the imposition of boundary
conditions or the choice of topology. It may have important implications on all scales, from
cosmological to subnuclear, and has become in recent decades an increasingly popular topic in
quantum field theory. In addition to its fundamental interest, the Casimir effect also plays an
important role in the fabrication and operation of nano- and micro-scale mechanical systems.
The imposition of boundary conditions on a quantum field leads to the modification of the
spectrum for the zero-point fluctuations and results in the shift in the vacuum expectation values
for physical quantities such as the energy density and stresses. In particular, the confinement
of quantum fluctuations causes forces that act on constraining boundaries. The particular
features of the resulting vacuum forces depend on the nature of the quantum field, the type of
spacetime manifold, the boundary geometries and the specific boundary conditions imposed on
the field. Since the original work by Casimir [1] many theoretical and experimental works have
been done on this problem (see, e.g., [2–5] and references therein). Many different approaches
have been used: mode summation method with combination of the zeta function regularization
technique, Green function formalism, multiple scattering expansions, heat-kernel series, etc.
Advanced field-theoretical methods have been developed for Casimir calculations during the
past few years [6–8].

An interesting property of the Casimir effect has always been the geometry dependence.
Straightforward computations of geometry dependencies are conceptually complicated, since
relevant information is subtly encoded in the fluctuations spectrum [8]. Analytic solutions
can usually be found only for highly symmetric geometries including planar, spherically
and cylindrically symmetric boundaries. Aside from their own theoretical and experimental
interest, the problems with this type of boundaries are useful for testing the validity of various
approximations used to deal with more complicated geometries. In particular, a great deal
of attention has been paid to investigations of quantum effects for cylindrical boundaries.
In addition to traditional problems of quantum electrodynamics in the presence of material
boundaries, the Casimir effect for cylindrical geometries can also be important to the flux
tube models of confinement [9, 10] and for determining the structure of the vacuum state
in interacting field theories [11]. The calculation of the vacuum energy of electromagnetic
field with boundary conditions defined on a cylinder turned out to be technically a more
involved problem than the analogous one for a sphere. First the Casimir energy of an infinite
perfectly conducting cylindrical shell has been calculated in [12] by introducing ultraviolet
cutoff and later the corresponding result was derived by the zeta function technique [13–15].
The local characteristics of the corresponding electromagnetic vacuum such as energy density
and vacuum stresses are considered in [16] for the interior and exterior regions of a conducting
cylindrical shell, and in [17] for the region between two coaxial shells (see also [18]). The
vacuum forces acting on the boundaries in the geometry of two cylinders are also considered
in [19]. Less symmetric configurations of a semi-circular infinite cylinder and of a wedge
with a coaxial cylindrical boundary are investigated in [20, 21]. A large number of papers are
devoted to the investigation of the various aspects of the Casimir effect for a dielectric cylinder
(see, for instance, [22] and references therein). From another perspective, the influence of
a dielectric cylinder on the radiation process from a charged particle has been discussed
in [23].

An interesting topic in the investigations of the Casimir effect is the dependence of
the vacuum characteristics on the nature of boundary conditions imposed. In [24] scalar
vacuum densities and the zero-point energy for the general Robin condition on a cylindrical
surface in an arbitrary number of spacetime dimensions are studied for a massive scalar
field with a general curvature coupling parameter. The Robin boundary conditions are
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an extension of the ones imposed on perfectly conducting boundaries and may, in some
geometries, be useful for depicting the finite penetration of the field into the boundary
with the ‘skin-depth’ parameter related to the Robin coefficient [25, 26]. It is interesting
to note that the quantum scalar field satisfying the Robin condition on the boundary of a
cavity violates Bekenstein’s entropy-to-energy bound near certain points in the space of the
parameter defining the boundary condition [27]. These types of conditions also appear in
considerations of the vacuum effects for a confined charged scalar field in external fields
[28] and in quantum gravity [29–31]. Mixed boundary conditions naturally arise for scalar
and fermion bulk fields in braneworld models [32]. For scalar fields with Robin boundary
conditions, in [33] it has been shown that in the discussion of the relation between the
mode-sum energy, evaluated as the sum of the zero-point energies for each normal mode of
frequency, and the volume integral of the renormalized energy density for the Robin parallel
plates geometry, it is necessary to include in the energy a surface term concentrated on the
boundary (for a discussion of the relation between the local and global characteristics of the
vacuum, see also [24, 34–37]). An expression for the surface energy–momentum tensor for
a scalar field with a general curvature coupling parameter in the general case of bulk and
boundary geometries is derived in [38]. A related cosmological constant induced on the
brane by quantum fluctuations of a bulk field in braneworld scenarios has been considered
in [39].

In the present paper, we consider the Casimir densities in the region between two coaxial
cylindrical shells on a background of the (D + 1)-dimensional Minkowski spacetime. The
positive frequency Wightman function, the vacuum expectation values of the field square
and the energy–momentum tensor are investigated for a massive scalar field with a general
curvature coupling parameter. In addition to describing the physical structure of the quantum
field at a given point, the energy–momentum tensor acts as the source of gravity in the
Einstein equations. It therefore plays an important role in modelling a self-consistent dynamics
involving the gravitational field [40]. For the general case of Robin boundary conditions with
different coefficients for the inner and outer boundaries, we derive formulae for the forces
acting on the boundaries due to the modification of the spectrum of the zero-point fluctuations
by the presence of the second boundary. The Casimir energy and the surface energy are
investigated as well and the energy balance is discussed.

The plan of the paper is as follows. In the next section we derive a formula for
the Wightman function in the region between two cylindrical surfaces. The reason for
our choice of the Wightman function is that this function also determines the response of
the particle detectors in a given state of motion. To evaluate the bilinear field products
we use the mode-sum method in combination with the summation formula from [18, 36].
These formulae allows us (i) to extract from vacuum expectation values the parts due
to a single cylindrical boundary, and (ii) to present the interference parts in terms of
exponentially convergent integrals involving the modified Bessel functions. The vacuum
expectation values of the field square and the energy–momentum tensor are obtained from
the Wightman function and are investigated in section 3. The vacuum forces acting on
the bounding surfaces are considered in section 4. They are presented as the sum of
self-action and interaction terms. Formulae are derived for the interaction forces between
the cylinders. Section 5 is devoted to the total vacuum energy evaluated as a sum of the
zero-point energies of elementary oscillators. We show that this energy in addition to the
volume part contains a part located on the bounding surfaces. The formula for the interaction
part of the surface energy is derived. Further, we discuss the relation between the vacuum
energies and forces acting on the boundaries. Section 6 concludes the main results of the
paper.
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2. Wightman function

Consider a real scalar field ϕ with the curvature coupling parameter ξ satisfying the field
equation

(∇ i∇i + ξR + m2)ϕ(x) = 0, (1)

where R is the curvature scalar for a (D + 1)-dimensional background spacetime, ∇i is the
covariant derivative operator. For special cases of minimally and conformally coupled scalars,
one has ξ = 0 and ξ = ξD ≡ (D − 1)/4D, respectively. Our main interest in this paper
will be one-loop quantum vacuum effects induced by two infinitely long coaxial cylindrical
surfaces with radii a and b, a < b, in the Minkowski spacetime. For this problem, the
background spacetime is flat and in equation (1) we have R = 0. As a result, the eigenmodes
are independent of the curvature coupling parameter. However, the local characteristics of the
vacuum, such as energy density and vacuum stresses, depend on this parameter. In accordance
with the problem symmetry we will use cylindrical coordinates (r, φ, z1, . . . , zN), N = D−2,
and will assume that the field obeys Robin boundary conditions on bounding surfaces:(

Aj + Bjn
i
(j)∇i

)
ϕ(x)

∣∣
r=j

= 0, j = a, b, (2)

with Aj and Bj being constants, ni
(j) is the inward-pointing normal to the bounding surface

r = j . For the region between the surfaces, a � r � b, one has ni
(j) = njδ

i
1 with the

notations na = 1 and nb = −1. The imposition of boundary conditions on the quantum field
modifies the spectrum for zero-point fluctuations and leads to the modification of the vacuum
expectation values (VEVs) for physical quantities compared with the case without boundaries.
First we consider the positive frequency Wightman function. The VEVs of the field square
and the energy–momentum tensor can be evaluated on the basis of this function. By the same
method described below any other two-point function can be evaluated.

Let {ϕα(x), ϕ∗
α(x)} is a complete orthonormal set of positive and negative frequency

solutions to the field equation, specified by a set of quantum numbers α and satisfying the
boundary conditions (2). By expanding the field operator and using the standard commutation
relations, the positive frequency Wightman function is presented as the mode-sum

〈0|ϕ(x)ϕ(x ′)|0〉 =
∑

α

ϕα(x)ϕ∗
α(x), (3)

where |0〉 is the amplitude for the corresponding vacuum state. For the region a � r � b, the
eigenfunctions are specified by the set of quantum numbers α = (γ, n, k), n = 0,±1,±2, . . . ,

and have the form

ϕα(x) = βαg|n|(γ a, γ r) exp(inφ + ikr‖ − iωt), (4)

with r‖ = (z1, . . . , zN), ω = √
γ 2 + k2

m, k2
m = k2 + m2, and

gn(γ a, γ r) = Ȳ (a)
n (γ a)Jn(γ r) − J̄ (a)

n (γ a)Yn(γ r). (5)

In equation (5), Jn(z) and Yn(z) are the Bessel and Neumann functions and for a given function
f (z) we use the notation

f̄ (j)(z) ≡ Ajf (z) + (njBj/j)zf ′(z), (6)

with j = a, b. The eigenfunctions (4) with the radial part (5) satisfy the boundary condition on
the inner surface. The eigenvalues for the quantum number γ are quantized by the boundary
condition (2) on the surface r = b. From this condition it follows that the possible values of
γ are solutions to the equation (η = b/a)

Cab
n (η, γ a) ≡ J̄ (a)

n (γ a)Ȳ (b)
n (γ b) − Ȳ (a)

n (γ a)J̄ (b)
n (γ b) = 0. (7)
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In the discussion below, we will denote the corresponding positive roots by γ a = σn,l, l =
1, 2, . . . , assuming that they are arranged in the ascending order, σn,l < σn,l+1.

The coefficient βα in (4) is determined from the orthonormality condition for the
eigenfunctions ∫

dV ϕα(x)ϕ∗
α′(x) = 1

2ω
δnn′δll′δ(k − k′), (8)

where the integration goes over the region between the cylindrical shells. By making use of
the standard integral for the cylindrical functions (see, for instance, [41]), one finds

β2
α = π2γ T ab

n (γ a)

4ωa(2π)D−1
, (9)

with the notation

T ab
n (z) = z

{
J̄ (a)2

n (z)

J̄
(b)2
n (ηz)

[
A2

b + (η2z2 − n2)
B2

b

b2
− A2

a − (z2 − n2)
B2

a

a2

]}−1

. (10)

Substituting eigenfunctions (4) into the mode-sum formula (3), for the positive frequency
Wightman function one finds

〈0|ϕ(x)ϕ(x ′)|0〉 = π2

2a

∫
dNk

∞∑
n=0

′
∞∑
l=1

zgn(z, zr/a)gn(z, zr
′/a)

(2π)D−1
√

z + k2
ma2

T ab
n (z)

∣∣∣∣
z=σn,l

× cos[n(φ − φ′)] exp[−ik(r‖ − r′
‖) − iω(t − t ′)] (11)

where the prime on the summation sign means that the summand with n = 0 should be halved.
As the expressions for the eigenmodes σn,l are not explicitly known, the form (11) for the
Wightman function is inconvenient. For the further evaluation of this VEV we apply to the
sum over l the summation formula [18, 36]

π2

2

∞∑
l=1

h(σn,l)T
ab
n (σn,l) =

∫ ∞

0

h(x) dx

J̄
(a)2
n (x) + Ȳ

(a)2
n (x)

− π

4

∫ ∞

0
dx �an(x, ηx)[h(x eπ i/2) + h(x e−π i/2)], (12)

where

�an(x, y) = K̄(b)
n (y)

/
K̄(a)

n (x)

K̄
(a)
n (x)Ī

(b)
n (y) − K̄

(b)
n (y)Ī

(a)
n (x)

, (13)

and In(x),Kn(x) are the modified Bessel functions. Here we have assumed that all zeros for
the function Cab

n (η, z) are real. In the case of the existence of purely imaginary zeros we have to
include additional residue terms on the left-hand side of formula (12) (see [36]). Formula (12)
is valid for functions h(z) satisfying the condition |h(z)| < ε(x) ec|y|, z = x +iy, c < 2(η−1),
for large values |z|, where x2δBa 0−1ε(x) → 0 for x → ∞, and the condition h(z) = o(z−1) for
z → 0.

For the evaluation of the Wightman function, as a function h(x) we choose

h(x) = xgn(x, xr/a)gn(x, xr ′/a)√
x2 + k2

ma2
exp

[
i

√
x2/a2 + k2

m(t ′ − t)
]
. (14)

The corresponding conditions are satisfied if r + r ′ + |t − t ′| < 2b. In particular, this is the
case in the coincidence limit t = t ′ for the region under consideration. Now we can see that



13376 A A Saharian and A S Tarloyan

the application of formula (12) allows us to present the Wightman function in the form

〈0|ϕ(x)ϕ(x ′)|0〉 = 1

(2π)D−1

∞∑
n=0

′ cos[n(φ − φ′)]
∫

dNk eik(r‖−r′
‖)

×
{

1

a

∫ ∞

0
dz

h(z)

J̄
(a)2
n (z) + Ȳ

(a)2
n (z)

− 2

π

∫ ∞

km

dz
x�aν(az, bz)√

z2 − k2
m

×G(a)
n (az, zr)G(a)

n (az, zr ′) cosh
[
(t − t ′)

√
z2 − k2

m

]}
, (15)

with the notations (the notation with j = b will be used below)

G(j)
n (x, y) = K̄(j)

n (x)In(y) − Ī (j)
n (x)Kn(y), j = a, b. (16)

In the limit b → ∞ the second term in figure braces on the right-hand side of (15)
vanishes, whereas the first term does not depend on b. It follows from here that the part with
the first term presents the Wightman function in the region outside of a single cylindrical
shell with radius a (of course, this may also be seen by direct evaluation of the corresponding
Wightman function). To simplify this part we use the identity

gn(z, zr/a)gn(z, zr
′/a)

J̄
(a)2
n (z) + Ȳ

(a)2
n (z)

= Jn(zr/a)Jn(zr
′/a) − 1

2

2∑
σ=1

J̄ (a)
n (z)

H̄
(σa)
n (z)

H (σ)
n (zr/a)H (σ)

n (zr ′/a),

(17)

with H(σ)
n (z), σ = 1, 2 being the Hankel functions. Substituting this into the first integral in

the figure braces of equation (15), we rotate the integration contour over z by the angle π/2
for σ = 1 and by the angle −π/2 for σ = 2. Under the condition r + r ′ − |t − t ′| > 2a, the
integrals over the arcs of the circle with large radius vanish. The integrals over (0, iakm) and
(0,−iakm) cancel out and after introducing the modified Bessel functions one obtains∫ ∞

0
dz

h(z)/a

J̄
(a)2
n (z) + Ȳ

(a)2
n (z)

=
∫ ∞

0
dz z

Jn(zr)Jn(zr
′)√

z2 + k2
m

exp
[
i

√
z2 + k2

m(t ′ − t)
]

− 2

π

∫ ∞

km

dz z
Ī (a)

n (az)

K̄
(a)
n (az)

Kn(zr)Kn(zr
′)√

z2 − k2
m

cosh
[√

z2 − k2
m(t ′ − t)

]
. (18)

Substituting this into formula (15), the Wightman function is presented in the form

〈0|ϕ(x)ϕ(x ′)|0〉 = 〈ϕ(x)ϕ(x ′)〉(0) + 〈ϕ(x)ϕ(x ′)〉(a)

− 22−D

πD

∞∑
n=0

′ cos[n(φ − φ′)]
∫

dNk eik(r‖−r′
‖)

∫ ∞

km

dz z
�an(az, bz)√

z2 − k2
m

×G(a)
n (az, zr)G(a)

n (az, zr ′) cosh
[
(t − t ′)

√
z2 − k2

m

]
, (19)

where 〈ϕ(x)ϕ(x ′)〉(0) is the Wightman function for a scalar field in the unbounded Minkowskian
spacetime, and

〈ϕ(x)ϕ(x ′)〉(a) = −22−D

πD

∞∑
n=0

′ cos[n(φ − φ′)]
∫

dN k eik(r‖−r′
‖)

×
∫ ∞

km

dz z
Ī (a)

n (az)

K̄
(a)
n (az)

Kn(zr)Kn(zr
′)√

z2 − k2
m

cosh
[√

z2 − k2
m(t ′ − t)

]
(20)
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is the part of the Wightman function induced by a single cylindrical shell with radius a in the
region r > a. Hence, the last term on the right-hand side of (19) is induced by the presence
of the second shell with radius b.

By introducing the notation

�bn(x, y) = Ī (a)
n (x)

/
Ī (b)

n (y)

K̄
(a)
n (x)Ī

(b)
n (y) − K̄

(b)
n (y)Ī

(a)
n (x)

, (21)

it can be seen that the Wightman function can also be presented in the equivalent form

〈0|ϕ(x)ϕ(x ′)|0〉 = 〈ϕ(x)ϕ(x ′)〉(0) + 〈ϕ(x)ϕ(x ′)〉(b)

− 22−D

πD

∞∑
n=0

′ cos[n(φ − φ′)]
∫

dNk eik(r‖−r′
‖)

∫ ∞

km

dz z
�bn(az, bz)√

z2 − k2
m

×G(b)
n (bz, zr)G(b)

n (bz, zr ′) cosh
[
(t − t ′)

√
z2 − k2

m

]
, (22)

where

〈ϕ(x)ϕ(x ′)〉(b) = −22−D

πD

∞∑
n=0

′ cos[n(φ − φ′)]
∫

dNk eik(r‖−r′
‖)

×
∫ ∞

km

dz z
K̄(b)

n (bz)

Ī
(b)
n (bz)

In(zr)In(zr
′)√

z2 − k2
m

cosh
[√

z2 − k2
m(t ′ − t)

]
(23)

is the part induced by a single cylindrical shell with radius b in the region r < b. Note that
formulae (20) and (23) are related by the interchange a � b, In � Kn. In the formulae for
the Wightman function given above the integration over the angular part of the vector k can
be done with the help of the formula∫

dNk
eikxF(k)

(2π)
N
2

=
∫ ∞

0
dk kN−1F(k)

JN/2−1(k|x|)
(k|x|)N/2−1

, (24)

for a given function F(k).

3. VEVs of the field square and the energy–momentum tensor

Having the Wightman function, we can evaluate the VEVs of the field square and the energy–
momentum tensor. These VEVs in the regions r < a and r > b are the same as those for a
single cylindrical surface with radius a and b respectively and are investigated in [24]. For this
reason, in the discussion below we will be concerned with the region a < r < b. By making
use of formulae (19) and (22) for the Wightman function and taking the coincidence limit of
the arguments, for the VEV of the field square one finds

〈0|ϕ2|0〉 = 〈ϕ2〉(0) + 〈ϕ2〉(j) − AD

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2 �jn(au, bu)G(j)2
n (ju, ru),

(25)

where j = a and j = b provide two equivalent representations and

AD = 22−D

π
D+1

2 �
(

D−1
2

) . (26)

For points away from the boundaries the last two terms on the right-hand side of formula (25)
are finite and, hence, the subtraction of the Minkowskian part without boundaries is sufficient
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to obtain the renormalized value for the VEV: 〈ϕ2〉ren = 〈0|ϕ2|0〉−〈ϕ2〉(0). In formula (25) the
part 〈ϕ2〉(j) is induced by a single cylindrical surface with radius j when the second surface is
absent. The formulae for these terms are obtained from (20) and (23) in the coincidence limit.
For j = a, one has

〈ϕ2〉(a) = −AD

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2
Ī (a)
n (au)

K̄
(a)
n (au)

K2
n(ru), (27)

and the formula for 〈ϕ2〉(b) is obtained from here by the replacements a → b, I � K . The
last term on the right-hand side of formula (25) is induced by the presence of the second
cylindrical surface. The surface divergences in the boundary induced parts in the VEV of the
field square are the same as those for single surfaces and are investigated in [24]. In particular,
the last term on the right-hand side of (25) is finite for r = j . It follows from here that if we
present the renormalized VEV of the field square in the form

〈ϕ2〉ren =
∑

j=a,b

〈ϕ2〉(j) + 〈ϕ2〉(ab), (28)

then the interference part 〈ϕ2〉(ab) is finite on both boundaries. In the limit a → 0 this part
vanishes as a for the Robin boundary condition on the inner shell (Aa, Ba 
= 0), as a2 for the
Neumann boundary condition (Aa = 0), and like 1/ln a for the Dirichlet boundary condition
(Ba = 0). In the limit b → ∞ and for a massless field the interference part vanishes as
ln b/bD−1 for the Robin boundary condition on the inner shell, as ln b/bD+1 for the Neumann
boundary condition, and like 1/bD−1 for the Dirichlet boundary condition. In the same limit
under the condition mb � 1 the interference part is exponentially suppressed.

The VEV for the energy–momentum tensor is obtained by using the formulae for the
Wightman function and the VEV of the field square:

〈0|Tik|0〉 = lim
x ′→x

∂i∂
′
k〈0|ϕ(x)ϕ(x ′)|0〉 +

[(
ξ − 1

4

)
gik∇l∇ l − ξ∇i∇k

] 〈0|ϕ2|0〉. (29)

Substituting (19), (22) and (25) into (29) one finds (no summation over i)

〈0|T k
i |0〉 = 〈

T k
i

〉(0)
+

〈
T k

i

〉(j)
+ ADδk

i

∞∑
n=0

′
∫ ∞

m

du u3

×(u2 − m2)
D−3

2 �jn(au, bu)F (i)
n

[
G(j)

n (ju, ru)
]
, (30)

where we have introduced notations

F (0)
n [f (z)] = 1 − m2r2/z2

D − 1
f 2(z) +

(
2ξ − 1

2

)[
f ′2(z) +

(
n2

z2
+ 1

)
f 2(z)

]
, (31a)

F (1)
n [f (z)] = 1

2

[
f ′2(z) −

(
n2

z2
+ 1

)
f 2(z)

]
+

2ξ

z
f (z)f ′(z), (31b)

F (2)
n [f (z)] =

(
2ξ − 1

2

) [
f ′2(z) +

(
n2

z2
+ 1

)
f 2(z)

]
− 2ξ

z
f (z)f ′(z) +

n2

z2
f 2(z), (31c)

with f (z) = G
(j)
n (ju, z) and

F (i)
n [f (z)] = F (0)

n [f (z)], i = 3, . . . , D − 1. (32)

Here and below the values of the tensor indices i, k = 1, 2, . . . , D correspond to the
coordinates r, φ, z1, . . . , zN , respectively. In formula (30) the term

〈
T k

i

〉(j)
is induced by

a single cylindrical surface with radius j . These parts for both interior and exterior regions are
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investigated in [24]. The formula for the case j = a is obtained from (27) by the replacement
K2

n(ru) → u2F (i)
n [Kn(ru)]. As in the case of the field square, the renormalized VEV of the

energy–momentum tensor can be presented in the form〈
T k

i

〉
ren =

∑
j=a,b

〈
T k

i

〉(j)
+

〈
T k

i

〉(ab)
, (33)

where the surface divergences are contained in the single boundary parts only and the
interference part is finite on the boundaries. The explicit formula for the latter is obtained by
subtracting from the last term on the right-hand side of (30) the corresponding single surface
part. Two equivalent representations are obtained by taking in (30) j = a or j = b. Due to
the presence of boundaries the vacuum stresses in the radial, azimuthal and axial directions
are anisotropic. For the axial stress and the energy density we have standard relation for the
unbounded vacuum. It can be easily checked that the separate terms in formulae (25) and (30)
satisfy the standard trace relation

T i
i = D(ξ − ξD)∇i∇ iϕ2 + m2ϕ2, (34)

and the continuity equation ∇iT
i
k = 0. For the geometry under consideration, the latter takes

the form

d

dr
T 1

1 +
1

r

(
T 1

1 − T 2
2

) = 0. (35)

In particular, this means that the r-dependence of the radial pressure leads to the anisotropy
of the vacuum stresses. For a conformally coupled massless scalar, the vacuum energy–
momentum tensor is traceless. In the limit a, b → ∞ with fixed b − a from the formulae
above the results for the geometry of two parallel plates with Robin boundary conditions are
obtained. In the limit a → 0 and for Aa 
= 0 the main contribution into the interference part
of the vacuum energy–momentum tensor comes from the n = 0 term and this part behaves
like a in the case Ba 
= 0 and like 1/ln(a/b) in the case Ba = 0. In the same limit and
for Aa = 0, the interference part behaves as a2. For a massless scalar field in the limit
b → ∞ and for Aa,Ba 
= 0, the main contribution comes, again, from the n = 0 term.
The corresponding energy density behaves as b1−D , while the vacuum stresses behave like
ln b/bD−1. For a massive scalar field under the condition mb � 1, the interference part of the
energy–momentum tensor is exponentially suppressed.

The interference part of the vacuum energy–momentum tensor gives finite contribution
into the vacuum energy in the region a � r � b. To evaluate this contribution we note that the
function G

(j)
n (ju, ru) is a modified cylindrical function with respect to the argument r. By

using the formula for the integral involving the square of a modified cylindrical function (see,
for instance, [41]), the following formula can be obtained:

2π

∫ b

a

dr r
〈
T 0

0

〉(ab) = E
(a)

b�r<∞ + E
(b)

0�r�a + �E(vol), (36)

where E
(a)

b�r<∞
(
E

(b)

0�r�a

)
is the vacuum energy in the region b � r < ∞ (0 � r � a) for a

single cylindrical shell with radius a (b) and

�E(vol) = πAD

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2

∑
j=a,b

nj�jn(au, bu)

×
{
(4ξ − 1)njAj

Bj

j
− 1 − m2/u2

D − 1

[
B2

j (u
2 + n2/j 2) − A2

j

]}
. (37)
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Now, by taking into account formula (36), for the total volume energy in the region a � r � b

one finds

E
(vol)
a�r�b = 2π

∫ b

a

dr r
〈
T 0

0

〉
ren = E

(a,vol)
r�a + E

(b,vol)
r�b + �E(vol), (38)

where E
(a,vol)
r�a

(
E

(b,vol)
r�b

)
is the volume part of the vacuum energy outside (inside) a single

cylindrical shell with radius a (b). Of course, due to the surface divergences these single shell
parts cannot be obtained directly by the integration of the corresponding densities. As we will
see below in section 5, the total vacuum energy in addition to the volume part contains the
contribution located on the boundaries.

4. Interaction forces

Now we turn to the vacuum forces acting on the cylindrical surfaces. The vacuum force
per unit surface of the cylinder at r = j is determined by the 1

1-component of the vacuum
energy–momentum tensor at this point. For the region between two surfaces the corresponding
effective pressures can be presented as the sum of two terms:

p(j) = p
(j)

1 + p
(j)

(int), j = a, b. (39)

The first term on the right-hand side is the pressure for a single cylindrical surface at r = j

when the second surface is absent. This term is divergent due to the surface divergences in
the vacuum expectation values of the local physical observables. Surface divergences are
well known in quantum field theory with boundaries and are investigated for various types
of boundary geometries and boundary conditions. Their appearance can be ascribed to the
oversimplification of the model, where all modes are equally affected by the boundary. In
a more realistic model, the microstructure of the boundary should be taken into account and
it is to be expected that local VEVs would tend to finite limiting values which depend on
the microscopic details of the boundary [42] (see also the discussion in section 5). Here we
will be concerned with the second term on the right-hand side of equation (39) which is the
pressure induced by the presence of the second cylinder, and can be termed as an interaction
force. Unlike the single shell parts, this term is free from renormalization ambiguities and is
determined by the last term on the right-hand side of formula (30). Substituting into this term
r = j and using the relations

G(j)
n (u, u) = −njBj/j, G(j)′

n (u, u) = Aj/u, (40)

for the interaction parts of the vacuum forces per unit surface one finds

p
(j)

(int) = AD

2j 2

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2 �jn(au, bu)
[
(n2/j 2 + u2)B2

j + 4ξnjAjBj/j − A2
j

]
.

(41)

The expression on the right-hand side of this formula is finite for all non-zero distances
between the shells. By taking into account the inequalities Kn(u)In(v)−Kn(v)In(u) > 0 and
K ′

n(u)I ′
n(v) − K ′

n(v)I ′
n(u) < 0 for u < v, it can be seen that the vacuum effective pressures

are negative for both Dirichlet and Neumann scalars and, hence, the corresponding interaction
forces are attractive. For the general Robin case, the interaction force can be either attractive
or repulsive depending on the coefficients in the boundary conditions (see the numerical
example presented below in figure 2). The quantity p

(j)

(int) determines the force by which the
scalar vacuum acts on the cylindrical shell due to the modification of the spectrum for the
zero-point fluctuations by the presence of the second cylinder. As the vacuum properties
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depend on the radial coordinate, there is no a priori reason for the interaction terms (and
also for the total pressures p(j)) to be the same for j = a and j = b, and the corresponding
forces in general are different. Note that the interaction parts act on the surfaces r = a + 0
and r = b − 0. The vacuum forces acting on the sides r = a − 0 and r = b + 0 are the
same as those for single surfaces. In combination with the parts p

(j)

1 from (39), the latter
give the total vacuum forces acting on a single cylindrical shell. For Dirichlet and Neumann
boundary conditions these forces can be obtained by differentiation of the corresponding
Casimir energy (see section 5). For the D = 3, massless scalar, these forces are repulsive
for the Dirichlet case and are attractive for the Neumann case [14]. In the corresponding
problem for the electromagnetic field the eigenfunctions may be resolved into the modes
of electric and magnetic type which satisfy Dirichlet and Neumann boundary conditions,
respectively. The corresponding expressions for the interaction forces are obtained from (41)
taking D = 3,m = 0 and (Aj , Bj ) = (1, 0) for the electric modes and (Aj , Bj ) = (0, 1) for
the magnetic modes. It is easy to check that the resulting formulae coincide with those derived
in [17] (see also references [18, 19]).

Using the Wronskian for the modified Bessel functions, it can be seen that, for j = a, b,
one has

Bjn(u)�jn(au, bu) = jnj

∂

∂j
ln

∣∣∣∣1 − Ī (a)
n (au)K̄(b)

n (bu)

Ī
(b)
n (bu)K̄

(a)
n (au)

∣∣∣∣ , (42)

where na = 1, nb = −1 and we have introduced the notation

Bjn(u) = B2
j (n

2/j 2 + u2) + njAjBj/j − A2
j . (43)

This allows us to write expressions (41) for the interaction forces per unit surface in another
equivalent form:

p
(j)

(int) = ADδk
i nj

2j

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2

×
[

1 + (4ξ − 1)
njAjBj

jBjn(u)

]
∂

∂j
ln

∣∣∣∣1 − Ī (a)
n (au)K̄(b)

n (bu)

Ī
(b)
n (bu)K̄

(a)
n (au)

∣∣∣∣ . (44)

This form will be used in the next section in the discussion of the relation between the vacuum
forces and the Casimir energy. Note that for Dirichlet and Neumann scalars the second term on
the square brackets vanish and the interaction forces do not depend on the curvature coupling
parameter.

Now we turn to the investigation of the vacuum interaction forces in various limiting
cases. First of all, let us consider the case when the radii of cylindrical surfaces are close to
each other: b/a − 1 � 1. Noting that in the limit b → a the vacuum forces diverge and
in the limit under consideration the main contribution comes from large values n, we can
use the uniform asymptotic expansions for the modified Bessel functions (see, for instance,
[44]). As the next step we introduce a new integration variable x = √

u2 − m2 and replace the
summation over n by the integration

∑∞′
n=0 → ∫ ∞

0 dn. Further introducing a new integration
variable n = ay and passing to the polar coordinates in the plane (x, y) after the integration
of the angular part, one finds

p
(j)

(int) ≈ − 21−D

π
D
2 �

(
D
2

) ∫ ∞

m

dt t2(t2 − m2)
D
2 −1

[
(Aa − Bat)(Ab − Bbt)

(Aa + Bat)(Ab + Bbt)
e2(b−a)t − 1

]−1

. (45)

The latter formula coincides with that for the interaction forces between two parallel plates
with Robin boundary conditions (2) on them [33]. In this case the interaction forces are
the same for both plates and do not depend on the curvature coupling parameter. Note that
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Figure 1. Vacuum interaction forces acting per unit surfaces of the cylindrical shells as functions
of a/b. The left panel corresponds to the case of D = 3 massless Dirichlet scalar and the right
one is for the Neumann scalar.

in the limit a → b with fixed values of the boundary coefficients and the shell radii, the
renormalized single surface parts p

(j)

1 remain finite while the interaction part goes to infinity.
This means that for sufficiently small distances between the boundaries the interaction term
on the right-hand side of formula (39) will dominate.

For small values of the ratio a/b, we introduce in (41) a new integration variable bu = x

and expand the integrand by using the formulae for the modified Bessel functions for small
values of the argument. For Aa,Ba 
= 0 in the leading order the main contribution comes
from the n = 0 term and we have

p
(a)

(int) ≈ ADAaξ

aBa

∫ ∞

m

du u(u2 − m2)
D−3

2
K̄

(b)
0 (bu)

Ī
(b)
0 (bu)

, (46)

p
(b)

(int) ≈ −ADAaa

4b2Ba

∫ ∞

m

du u(u2 − m2)
D−3

2
u2B2

b − 4ξAbBb/b − A2
b

Ī
(b)2
0 (bu)

. (47)

In the same limit and for Ba = 0 the corresponding asymptotic formulae for the interaction
forces are obtained by the replacement ξAa/Ba → −1/[4a ln2(a/b)] in formula (46) and by
the replacement Aaa/Ba → 1/ ln(a/b) in formula (47). In the case of the Neumann boundary
condition on the surface r = a ( Aa = 0) the main contribution into the vacuum interaction
forces comes from the n = 0 and n = 1 terms with the leading behaviour

p
(a)

(int) ≈ AD

2

∫ ∞

m

du u3(u2 − m2)
D−3

2

1∑
n=0

′ K̄
(b)
n (bu)

Ī
(b)
n (bu)

, (48)

p
(b)

(int) ≈ −ADa2

4b2

∫ ∞

m

du u3(u2 − m2)
D−3

2

1∑
n=0

′ (u
2 + n2/b2)B2

b − 4ξAbBb/b − A2
b

Ī
(b)2
n (bu)

. (49)

In figure 1 we have plotted the dependence of the interaction forces per unit surface on the
ratio of the radii for the cylindrical shells, a/b, for the cases of D = 3 Dirichlet (left panel) and
Neumann (right panel) massless scalars. As we have mentioned before, the interaction forces
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Figure 2. The same as in figure 1 for minimally (left panel) and conformally (right panel) coupled
Robin scalars with Ba = 0, Bb/(Abb) = −0.2.

in these cases are attractive. In figure 2 we present the same graphs for the Robin boundary
conditions with the coefficients Ba = 0, Bb/(Abb) = −0.2. The left panel corresponds to the
minimally coupled scalar and the right one is for a conformally coupled scalar. As we see,
for the example considered the interaction force are repulsive for small distances between the
surfaces and are attractive for large distances. This provides a possibility for the stabilization
of the radii by the vacuum forces. However, it should be noted that to make reliable predictions
regarding quantum stabilization, the single shell parts p

(j)

1 also should be taken into
account.

5. Casimir energy

In this section we consider the total vacuum energy for the configuration of two coaxial
cylindrical boundaries. In the region between the boundaries the total vacuum energy per
unit hypersurface in the axial direction is the sum of the zero-point energies of elementary
oscillators:

Ea�r�b =
∫

dNk
(2π)N

∞∑
n=0

′
∞∑
l=1

(
k2 + m2 + σ 2

n,l

/
a2

)1/2
. (50)

The expression on the right-hand side is divergent and to deal with this divergence we take the
zeta function approach (for the application of the zeta function technique to the calculations
of the Casimir energy, see [45] and references therein). We consider the related zeta function

ζ(s) = µs+1
∫

dNk
(2π)N

∞∑
n=0

′
∞∑
l=1

(
k2 + σ 2

n,l

/
a2 + m2

)−s/2
, (51)

where the parameter µ with dimension of mass is introduced for dimensional reasons.
Evaluating the integral over k, we present this function in the form

ζ(s) = µs+1

(4π)
N
2

�
(

s−N
2

)
�

(
s
2

)
aN−s

∞∑
n=0

′ζn (s − N) , (52)



13384 A A Saharian and A S Tarloyan

with the partial zeta function

ζn (s) =
∞∑
l=1

(
σ 2

n,l + m2a2)−s/2
. (53)

We need to perform the analytic continuation of the sum on the right-hand side of (52) to the
neighbourhood of s = −1. An immediate consequence of Cauchy’s formula for the residues
of a complex function is the expression

ζn (s) = 1

2πi

∫
C

dz(z2 + m2a2)−s/2 ∂

∂z
ln Cab

n (η, z), (54)

where C is a closed counterclockwise contour in the complex z plane enclosing all zeros σn,l .
We assume that this contour is made of a large semicircle (with the radius tending to infinity)
centred at the origin and placed to its right, plus a straight part overlapping the imaginary axis
and avoiding the points ±iam by small semicircles in the left half-plane. When the radius
of the large semicircle tends to infinity, the corresponding contribution into ζn (s) vanishes
for Re s > 1. Let us denote by C1 and C2 the upper and lower halves of the contour C. The
integral on the right-hand side of equation (54) can be presented in the form

ζn (s) = 1

2πi

∫
C

dz(z2 + m2a2)−s/2 ∂

∂z
ln

[
z−nJ̄ (b)

n (ηz)
]

+
1

2πi

∑
α=1,2

∫
Cα

dz(z2 + m2a2)−s/2 ∂

∂z
ln

[
znH̄ (αa)

n (z)
]

+
1

2πi

∑
α=1,2

∫
Cα

dz(z2 + m2a2)−s/2 ∂

∂z
ln

[
1 − J̄ (a)

n (z)H̄ (αb)
n (ηz)

H̄
(αa)
n (z)J̄

(b)
n (ηz)

]
, (55)

where H(α)
n (z) are the Hankel functions. After parameterizing the integrals over the imaginary

axis, we see that the parts of the integrals over (0,±ima) cancel and we arrive at the expression

ζn (s) = 1

π
sin

πs

2

∫ ∞

ma

dz(z2 − m2a2)−s/2 ∂

∂z

{
ln

[
z−nĪ (b)

n (ηz)
]

+ ln
[
znK̄(a)

n (z)
]

+ ln

(
1 − Ī (a)

n (z)K̄(b)
n (ηz)

K̄
(a)
n (z)Ī

(b)
n (ηz)

) }
. (56)

The integral with the last term in figure braces on the right-hand side of this formula is finite
at s = −(N + 1) and vanishes in the limits a → 0 or b → ∞. The integrals with the first and
second terms in the figure braces correspond to the partial zeta functions for the region inside
a cylindrical shell with radius b and for the region outside a cylindrical shell with radius a,
respectively. As a result, the total energy in the region a � r � b is presented in the form

Ea�r�b = ζ(s)|s=−1 = E
(a)

r�a + E
(b)

r�b + �E, (57)

where E
(a)

r�a

(
E

(b)

r�b

)
is the vacuum energy for the region outside (inside) a cylindrical shell with

radius a (b) and the interference term is given by the formula

�E = − (4π)
1−D

2

�
(

D+1
2

) ∞∑
n=0

′
∫ ∞

m

du(u2 − m2)
D−1

2
∂

∂u
ln

∣∣∣∣1 − Ī (a)
n (au)K̄(b)

n (bu)

K̄
(a)
n (au)Ī

(b)
n (bu)

∣∣∣∣
= πAD

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2 ln

∣∣∣∣1 − Ī (a)
n (au)K̄(b)

n (bu)

K̄
(a)
n (au)Ī

(b)
n (bu)

∣∣∣∣ . (58)

To obtain the first of these formulae from the corresponding zeta function we have used the
relation �(x) sin πx = π/�(1 − x) for the gamma function. As in the case of the interaction
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forces, it can be easily seen that in the special cases of D = 3 massless Dirichlet and Neumann
scalars formula (58) coincides with the interaction energies of the electric and magnetic
modes for the electromagnetic field [17–19]. The interaction part of the vacuum energy (58)
is negative for Dirichlet or Neumann boundary conditions and positive for Dirichlet boundary
condition on one shell and Neumann boundary condition on the other. By the way similar to
that used before for the case of the interaction forces it can be seen that in the limit a, b → ∞
for fixed b − a the corresponding result is obtained for parallel plates. In the limit a → 0 for
Aa,Ba 
= 0 the main contribution into the interaction part of the vacuum energy comes from
the n = 0 term. By using the expansions for the modified Bessel functions for small values of
the argument to the leading order, one finds

�E ≈ AD

πAaa

2Ba

∫ ∞

m

du u(u2 − m2)
D−3

2
K̄

(b)
0 (bu)

Ī
(b)
0 (bu)

. (59)

In the same limit and for Dirichlet boundary condition on the inner cylinder, Ba = 0, the
leading behaviour for �E is obtained from (59) by the replacement Aaa/Ba → ln(a/b). In
the case of Neumann boundary condition on r = a, the main contribution comes from the
n = 0 and n = 1 terms and �E vanishes as a2:

�E ≈ AD

πa2

2

∫ ∞

m

du u3(u2 − m2)
D−3

2

1∑
n=0

′ K̄
(b)
n (bu)

Ī
(b)
n (bu)

.

In the limit b → ∞ and for a massless scalar field we have an asymptotic behaviour with the
leading term coming from n = 0 summand,

�E ≈ πAD

2bD−1 ln(a/b)

∫ ∞

0
du uD−2 K0(u)

I0(u)
, (60)

assuming that Aa,Ab 
= 0. For Aa = 0 and Ab 
= 0, the main contribution into the interaction
part of the vacuum energy comes from the n = 0 and n = 1 terms:

�E ≈ πa2AD

2bD+1

∫ ∞

0
du uD

1∑
n=0

′ Kn(bu)

In(bu)
. (61)

For the Neumann boundary condition on the outer cylinder, Ab = 0, in the integrands of (60)
and (61) instead of ratio of the modified Bessel functions the ratio of their derivatives stands.
For a massive field and large values for the radius of the outer cylinder, under the condition
mb � 1 the main contribution into the integral over u in equation (58) comes from the lower
limit of the integral. By using the asymptotic formulae for the modified Bessel function for
large values of the argument, to the leading order we find

�E ≈ −21−Dm
D−1

2

π
D−3

2 b
D−1

2

Ab − Bbm

Ab + Bbm
e−2mb

∞∑
n=0

′ Ī (a)
n (am)

K̄
(a)
n (am)

, (62)

and the interaction part of the vacuum energy is exponentially suppressed. In figure 3 we have
plotted the dependence of the interaction parts (full curves) in the total vacuum energy on
the ratio a/b for D = 3 massless scalar fields with Dirichlet, Neumann and Robin boundary
conditions. For the Robin case, we have chosen the parameters in the boundary conditions as
Ba = 0, Bb/(Abb) = −0.2.

To obtain the total Casimir energy, E, we need to add to the energy in the region between
the shells, given by equation (58), the energies coming from the regions r � a and r � b. As
a result, one receives

E =
∑

j=a,b

E(j) + �E, (63)
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Figure 3. Interaction parts of the total and surface energies as functions of a/b. The graphs are
plotted for D = 3 massless scalar fields with Dirichlet (D) and Neumann (D) boundary conditions
and in the case of Robin (R) boundary condition with Ba = 0, Bb/(Abb) = −0.2.

where E(j) is the Casimir energy for a single cylindrical shell with the radius j . The latter
is investigated in [24] as a function on the ratio of coefficients in Robin boundary condition.
In particular, for Dirichlet and Neumann massless scalars for the finite parts of the Casimir
energies one has E

(j)

D = 6.15 · 10−4j−2 and E
(j)

N = −1.42 · 10−2j−2 (see [14]). Note that
in the total vacuum energy single boundary parts dominate for small values of the ratio a/b

and the interaction part is dominant for a/b � 1. In particular, combining the results for the
single surface energies with the graphs from figure 3, we see that the total Casimir energy for a
massless Dirichlet scalar in the geometry of two cylindrical shells is positive for small values
of a/b and is negative for a/b � 1. For the Neuamnn case, the vacuum energy is negative for
all values a/b and has a maximum for some intermediate value of this ratio.

Though the main subject of the present paper is the vacuum energy–momentum tensor at
the points away from the boundaries and the interaction forces between the boundaries, which
are well-defined quantities within the framework of the standard renormalization procedure
of the quantum field theory without boundaries, here we comment briefly on the surface
divergences. We have considered a model where the physical interactions are replaced by the
imposition of boundary conditions on the field for all modes. Of course, this is an idealization
as real physical materials cannot constrain all the modes of a fluctuating quantum field [7, 42].
In general, the physical quantities in the problems with boundary conditions can be classified
into two main types. For the quantities of the first type, the contribution of the higher modes into
the boundary induced effects is suppressed by the parameters already present in the idealized
model. Examples of such quantities are the energy density and the vacuum stresses at the points
away from the boundary and the interaction forces between disjoint bodies. For instance, if
we consider the energy density at the point having the distance x from the boundary, the main
contribution comes from the frequencies �1/x. For the quantities from the second type, such
as the energy density on the boundary and the total vacuum energy, the contribution of the
arbitrary higher modes is dominant and they contain divergences which cannot be eliminated
by the standard renormalization procedure of quantum field theory without boundaries. Of
course, the model where the physical interaction is replaced by the imposition of boundary
conditions on the field for all modes is an idealization. The appearance of divergences in
the process of the evaluation of physical quantities of the second type indicate that a more
realistic physical model should be employed for their evaluation. In the literature on the
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Casimir effect different field-theoretical approaches have been discussed to extract the finite
parts from the diverging quantities. However, in the physical interpretation of these results
it should be taken into account that these terms are only a part of the full expression of the
physical quantity and the terms which are divergent in the idealized model can be physically
essential and their evaluation needs a more realistic model. It seems plausible that such effects
as surface roughness, or the microstructure of the boundary on small scales, can introduce a
physical cutoff needed to produce finite values for surface quantities (see, for instance, [46]
and references therein for models of this kind). Another possibility, proposed in [7], is to
replace a boundary condition by a renormalizable coupling between the fluctuating field and
the non-dynamical smooth background field representing the material (for the evaluation of
the vacuum energy in smooth background fields see also [6]). In this model the standard
renormalization procedure of quantum field theory without boundaries provides the finite
result for the quantities which are divergent in the boundary condition limit. An alternative
mechanism for introducing a cutoff which removes singular behaviour on boundaries is to
allow the position of the boundary to undergo quantum fluctuations [47]. Such fluctuations
smear out the contribution of the high frequency modes without the need to introduce an
explicit high frequency cutoff.

The total volume energy in the region between two cylindrical surfaces, a � r � b, is
obtained by the integration of the 0

0-component of the volume energy–momentum tensor over
this region:

E(vol) = 2π

∫ b

a

dr r〈0|T 0
0 |0〉. (64)

Substituting the mode-sum expansion (11) into formula (29), after the integration for the
volume part of the vacuum energy we obtain

E(vol) = Ea�r�b − π(4ξ − 1)
∑

j=a,b

jAj

Bj

〈0|ϕ2|0〉r=j . (65)

As we see, this energy differs from the total Casimir energy (50) (see [38] for the discussion
in the general case of bulk and boundary geometries). This difference is due to the presence
of the surface energy located on the bounding surfaces. By using the standard variational
procedure, in [38] it has been shown that the energy–momentum tensor for a scalar field on
manifolds with boundaries in addition to the bulk part contains a contribution located on the
boundary. For an arbitrary smooth boundary ∂Ms with the inward-pointing unit normal vector
nl , the surface part of the energy–momentum tensor is given by the formula

T
(surf)
ik = δ(x; ∂Ms)τik (66)

with

τik = ξϕ2Kik − (2ξ − 1/2)hikϕnl∇lϕ, (67)

and the ‘one-sided’ delta-function δ(x; ∂Ms) locates this tensor on ∂Ms . In equation (67), Kik

is the extrinsic curvature tensor of the boundary ∂Ms and hik is the corresponding induced
metric. In the region between the cylindrical surfaces for separate boundaries one has
K

(j)

ik = −jnj δ
2
i δ

2
k , j = a, b. Now substituting the eigenfunctions into the corresponding

mode-sum formula and using the boundary conditions, for the surface energy–momentum
tensor on the boundary r = j one finds

〈0|τ (j)k

i |0〉 = [−ξjnj δ
2
i δ

k
2 + (2ξ − 1/2)δk

i Aj/Bj

]〈0|ϕ2|0〉r=j , (68)
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for i, k = 0, 1, . . . , D and 〈0|τ (j)1
1 |0〉 = 0. From (68) for the surface energy we obtain the

formula

E(surf) = 2π

∫ b

a

dr r〈0|T (surf)0
0 |0〉 = π(4ξ − 1)

∑
j=a,b

jAj

Bj

〈0|ϕ2|0〉r=j , (69)

which, in accordance with (65), exactly coincides with the difference between the total and
volume energies. Of course, the VEVs of the field square on the right-hand side of this
formula and, hence, the surface energy–momentum tensor diverge. Note that due to the surface
divergences the subtraction of the boundary-free part is not sufficient to obtain the finite result
and additional subtractions are needed. In particular, the generalized zeta function method is
in general very powerful to extract the finite parts from divergent quantities. However, in this
paper, we will not go into the details of the evaluation for the finite part of the surface energy–
momentum tensor for a single cylindrical boundary. This investigation will be presented in
the forthcoming paper [43]. As it has been mentioned before, one should keep in mind that
in a more realistic physical model for the boundary additional terms can be present which
depend on the microscopic details of the model. Here we note that after the subtraction of the
boundary-free part the remained divergences in the surface energy–momentum tensor are the
same as those for a single surfaces when the second surface is absent. The additional parts
induced by the presence of the second surface are finite and can be obtained by using the
representation of the VEV for the field square given by formula (25). By taking into account
the relation (40), the surface energy on the boundary r = j is presented in the form

E
(surf)
j = E

(surf)
1j + �E

(surf)
j , (70)

where E
(surf)
1j is the surface energy for a single cylindrical boundary with radius j when the

second boundary is absent and the term

�E
(surf)
j = −π(4ξ − 1)AD

AjBj

j

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2 �jn(au, bu) (71)

is induced by the presence of the second boundary. The latter is finite for all non-zero
intersurface distances. Note that on the basis of relation (42) it can also be written in the form

�E
(surf)
j = −πAD(4ξ − 1)

∞∑
n=0

′
∫ ∞

m

du u(u2 − m2)
D−3

2

× njAjBj

Bjn(u)

∂

∂j
ln

∣∣∣∣1 − Ī (a)
n (au)K̄(b)

n (bu)

Ī
(b)
n (bu)K̄

(a)
n (au)

∣∣∣∣ , (72)

where Bjn(u) is defined by equation (43). Now, by using formulae (37), (58) and (72), it can
be explicitly checked the relation

�E = �E(vol) +
∑

j=a,b

�E
(surf)
j (73)

for the interaction parts of the separate energies. In figure 3 we have plotted the interaction
part of the surface energy (dashed curve) for the case of D = 3 massless Robin scalar with
Ba = 0, Bb/(Abb) = −0.2 as a function on the ratio a/b. For the example considered, this
energy is located on the surface r = b − 0 of the outer cylinder. The surface energies for
Dirichlet and Neumann scalars vanish.

Now let us explicitly check that for the interaction parts the standard energy balance
equation is satisfied. We expect that in the presence of the surface energy this equation will
be in the form

dE = −pdV +
∑

j=a,b

E
(surf)
j

2πj
dS(j), (74)
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where V = π(b2 − a2) and S(j) = 2πj are the volume and surface area per unit hypersurface
in the axial direction. In equation (74), p is the perpendicular vacuum stress on the boundary
and is determined by the vacuum expectation value of the 1

1-component of the bulk energy–
momentum tensor, p = −〈0|T 1

1 |0〉. From equation (74) one obtains

∂E

∂j
= 2πjnjp

(j) + E
(surf)
j

/
j, (75)

with p(j) being the perpendicular vacuum stress on the boundary r = j . Assuming that
relation (75) is satisfied for the single boundary parts, for the interference parts we find

∂�E

∂j
= 2πjnjp

(j)

(int) + �E
(surf)
j

/
j. (76)

Now by taking into account expressions (44), (58) and (72) for the separate terms in this
formula and integrating by part in (58), we see that this relation indeed takes place. Hence,
we have explicitly checked that the vacuum energies and effective pressures on the boundaries
obey the standard energy balance equation. Note that here the role of the surface energy is
crucial and the vacuum forces acting on the boundary evaluated from the bulk stress tensor
(determined by p

(j)

(int)), in general, cannot be obtained by a simple differentiation of the total
vacuum energy. The second term on the right-hand side of formula (76) corresponds to
the additional pressure acting on the curved boundary. Noting that �E

(surf)
j

/
(2πj) is the

corresponding surface energy density, we see that this pressure is determined by the Laplace
formula. The total pressure on the boundary evaluated as the sum of bulk and surface parts is
related to the total vacuum energy by a standard formula and does not depend on the curvature
coupling parameter.

6. Conclusion

In the present paper, we have investigated the one-loop quantum vacuum effects produced by
two coaxial cylindrical shells in the (D + 1)-dimensional Minkowski spacetime. The case of
a massive scalar field with a general curvature coupling parameter and satisfying the Robin
boundary conditions on the boundaries is considered. To derive formulae for the VEVs of
the field operator squared and the energy–momentum tensor, we first construct the positive
frequency Wightman function. This function is also important in considerations of the response
of a particle detector at a given state of motion through the vacuum under consideration [40].
The application of a variant of the generalized Abel–Plana formula to the mode-sum over
zeros of the combinations of the cylindrical functions allowed us to extract the parts due to a
single cylindrical boundary and to present the second boundary induced parts in terms of the
exponentially convergent integrals. For the exterior and interior regions of a single cylindrical
shell the Wightman functions are given by formulae (20) and (23) respectively. The second
boundary induced parts are presented by the last terms on the right-hand sides of formulae (19)
and (22). The VEVs of the field square and the energy–momentum tensor are obtained by the
evaluation of the Wightman function and the combinations of its derivatives in the coincidence
limit of arguments. In both cases the expectation values are presented as the sum of single
boundary induced and interference terms. The surface divergences in the VEVs of the local
observables are contained in the single boundary parts and the interference parts are finite on
both boundaries. In particular, the integrals in the corresponding formulae are exponentially
convergent and they are useful for numerical evaluations. Due to the presence of boundaries
the vacuum stresses in the radial, azimuthal and axial directions are anisotropic. For the axial
stress and the energy density we have standard relation for the unbounded vacuum. We have
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considered various limiting cases of the formulae for the interference parts. In particular, in
the limit a, b → ∞ for a fixed value b − a, we recover the result for the geometry of two
parallel Robin plates on the Minkowski background. The vacuum forces acting on boundaries
are considered in section 4. These forces contain two terms. The first ones are the forces
acting on a single surface then the second boundary is absent. Due to the well-known surface
divergences in the VEVs of the energy–momentum tensor these forces are infinite and need
a more realistic model for their evaluation. The other terms in the vacuum forces are finite
and are induced by the presence of the second boundary. They correspond to the interaction
forces between the boundaries and are determined by formula (41) or equivalently by formula
(44). For the Dirichlet and Neumann scalars these forces are always attractive and they
are repulsive for the mixed Dirichlet–Neumann case. In the case of general Robin scalar
the interaction forces can be both attractive or repulsive depending on the coefficients in
the boundary conditions and the distance between the boundaries. As an illustration, in
figure 2 we present an example when the interaction forces are repulsive for small distances
and are attractive for large distances. This provides a possibility for the stabilization of the
radii by vacuum forces. However, it should be noted that for the reliable predictions regarding
quantum stabilization, the renormalized single shell parts also should be taken into account. In
section 5 we consider the total vacuum energy in the region between the cylindrical surfaces,
evaluated as the sum of the zero-point energies for elementary oscillators. It is argued that this
energy differs from the energy, obtained by the integration of the volume energy density over
the region between the boundaries. We show that this difference is due to the presence of the
surface energy located on the bounding surfaces. Further, for the evaluation of the total and
surface energies we use the zeta function technique. They are presented as the sum of single
boundary and interaction parts. The latter are given by formula (58) for the total vacuum
energy and by formula (72) for the surface energy and are finite for all non-zero values of the
intersurface separation. In the total vacuum energy single boundary parts dominate for small
values of the ratio a/b and the interaction part is dominant for a/b � 1. For an arbitrary
number of spatial dimensions and independent of the value of the mass, the interaction part of
the vacuum energy is negative for Dirichlet or Neumann boundary conditions and is positive
for Dirichlet boundary condition on one shell and Neumann boundary condition on the other.
Further, we have shown that the induced vacuum densities and vacuum effective pressures
on the cylindrical surfaces satisfy the energy balance equation (74) with the inclusion of the
surface terms, which can also be written in the form (76).

Acknowledgments

AAS was supported by the Armenian Ministry of Education and Science grant no 0124 and
in part by PVE/CAPES program.

References

[1] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. B 51 793
[2] Mostepanenko V M and Trunov N N 1997 The Casimir Effect and Its Applications (Oxford: Oxford University

Press)
[3] Plunien G, Muller B and Greiner W 1986 Phys. Rep. 134 87
[4] Bordag M, Mohidden U and Mostepanenko V M 2001 Phys. Rep. 353 1
[5] Milton K A 2002 The Casimir Effect: Physical Manifestation of Zero-Point Energy (Singapore: World Scientific)
[6] Bordag M 1995 J. Phys. A: Math. Gen. 28 755

Bordag M and Lindig G 1996 J. Phys. A: Math. Gen. 29 4481
Bordag M and Kirsten K 1996 Phys. Rev. D 53 5753

http://dx.doi.org/10.1016/0370-1573(86)90020-7
http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://dx.doi.org/10.1088/0305-4470/28/3/028
http://dx.doi.org/10.1088/0305-4470/29/15/019
http://dx.doi.org/10.1103/PhysRevD.53.5753


Scalar Casimir densities for cylindrically symmetric Robin boundaries 13391

Bordag M and Kirsten K 1999 Phys. Rev. D 60 105019
[7] Graham N, Jaffe R L, Khemani V, Quandt M, Scandurra M and Weigel H 2002 Nucl. Phys. B 645 49

Graham N, Jaffe R L and Weigel H 2002 Int. J. Mod. Phys. A 17 846
Graham N, Jaffe R L, Khemani V, Quandt M, Scandurra M and Weigel H 2003 Phys. Lett. B 572 196
Graham N, Jaffe R L, Khemani V, Quandt M, Schröder O and Weigel H 2004 Nucl. Phys. B 677 379
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